Smooth-pursuit eye movements without head movement disrupt the static body balance
نویسندگان
چکیده
[Purpose] To investigate the changes of body balance in static posture in smooth-pursuit eye movements (SPEMs) without head movement. [Subjects and Methods] Forty subjects (24 males, 16 females) aged 23.24 ± 2.58 years participated. SPEMs were activated in three directions (horizontal, vertical, and diagonal movements); the target speed was set at three conditions (10°/s, 20°/s, and 30°/s); and the binocular visual field was limited to 50°. To compare the body balance changes, the general stability (ST) and the fall risk index (FI) were measured with TETRAX. The subjects wore a head-neck collar and stood on a balance plate for 32 s during each measurement in three directions. SPEMs were induced to each subject with nine target speeds and directions. All measured values were compared with those in stationary fixation. [Results] The ST and FI increased significantly in all SPEMs directions, with an increased target speed than that in stationary fixation. In the same condition of the target speed, the FI had the highest value relative to diagonal SPEMs. [Conclusion] SPEMs without head movement disrupt the stability of body balance in a static posture, and diagonal SPEMs may have a more negative effect in maintaining body balance than horizontal or vertical SPEMs.
منابع مشابه
Distinct eye movement patterns enhance dynamic visual acuity
Dynamic visual acuity (DVA) is the ability to resolve fine spatial detail in dynamic objects during head fixation, or in static objects during head or body rotation. This ability is important for many activities such as ball sports, and a close relation has been shown between DVA and sports expertise. DVA tasks involve eye movements, yet, it is unclear which aspects of eye movements contribute ...
متن کاملBrain stem pursuit pathways: dissociating visual, vestibular, and proprioceptive inputs during combined eye-head gaze tracking.
Eye-head (EH) neurons within the medial vestibular nuclei are thought to be the primary input to the extraocular motoneurons during smooth pursuit: they receive direct projections from the cerebellar flocculus/ventral paraflocculus, and in turn, project to the abducens motor nucleus. Here, we recorded from EH neurons during head-restrained smooth pursuit and head-unrestrained combined eye-head ...
متن کاملRepresentation of Neck Velocity and Neck–Vestibular Interactions in Pursuit Neurons in the Simian Frontal Eye Fields
The smooth pursuit system must interact with the vestibular system to maintain the accuracy of eye movements in space (i.e., gaze-movement) during head movement. Normally, the head moves on the stationary trunk. Vestibular signals cannot distinguish whether the head or whole body is moving. Neck proprioceptive inputs provide information about head movements relative to the trunk. Previous studi...
متن کاملEffect of eye movements on dynamic equilibrium.
The purpose of this study was to determine whether visual improvement of balance varies depending on the movement of the eye. Three movements were compared: static visual fixations, saccadic eye movements, and smooth pursuit eye movements. The subjects in this study were 35 healthy female volunteers. Balance was defined as the subjects' ability to maintain their equilibrium while keeping the un...
متن کاملRole of the cerebellar flocculus region in the coordination of eye and head movements during gaze pursuit.
The contribution of the flocculus region of the cerebellum to horizontal gaze pursuit was studied in squirrel monkeys. When the head was free to move, the monkeys pursued targets with a combination of smooth eye and head movements; with the majority of the gaze velocity produced by smooth tracking head movements. In the accompanying study we reported that the flocculus region was necessary for ...
متن کامل